BREATHE EASY WITH PROPER VENTILATION AND INDOOR AIR QUALITY (IAQ)

Tired of stuffy buildings and stale air? Unlock the secrets of healthy indoor environments.

In this course, we will delve into the critical role of ventilation in maintaining good indoor air quality (IAQ). You'll learn ventilation strategies to prevent the spread of airborne diseases and create healthy buildings. Industrial ventilation emphasizes the control of heat and contaminants by dilution ventilation and local exhaust ventilation. Embedded within the course are essential metrics, practical tips, and handy rules of thumb to help you make well-informed decisions.

You can find **Key Rules of Thumb in Annexure - 3** for quick and easy reference. These guidelines, metrics, and thumb rules are based on sound engineering practices and the author's experience, but they may vary depending on operating conditions and other factors. This document is a live resource that will be updated regularly as new information becomes available.

Read to get insight into Indoor Air Quality with right ventilation. Let's get started!

CHAPTER - 1: VENTILATION SYSTEMS OVERVIEW

Ventilation is the replacement of indoor air with fresh outdoor air to dilute and displace air pollutants inside the room of a building. Ventilation requirement is determined by American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Standard 62.1 according to floor area and the number of people present.

Figure 1. HVAC System: Cooling & Ventilation

1.1 Indoor Air Quality (IAQ)

Indoor Air Quality (IAQ) refers to the quality of the air inside and around buildings, affecting the health, comfort, and productivity of occupants. Ensuring good IAQ is important because people spend much of their time indoors, and poor IAQ can impact health, productivity, and overall well-being. IAQ issues include:

- a. Sick Building Syndrome (SBS): Refers to non-specific symptoms (headache, dizziness, eye irritation) that occur when occupants are in the building but disappear shortly after leaving. Symptoms are not directly linked to a specific cause.
- b. Building-Related Illness (BRI): Refers to diagnosed medical condition (e.g., Legionnaires' disease, hypersensitivity pneumonitis, or asthma) directly linked to airborne contaminants in the building or indoor air quality issues. Symptoms persist even after leaving the building and may require medical treatment.

Chemical contaminants and high VOC compounds in buildings (such as those from paints, carpets, and disinfectants) can contribute to both SBS and BRI. Source control is the primary strategy for achieving good indoor air quality (IAQ).

Table 1. Common IAQ Issues and Prevention

	IAQ Issue	Rules of Thumb
0	Sick Building Syndrome (SBS)	General indoor discomfort due to poor ventilation, excessive humidity, inadequate temperature control, indoor contaminants etc. Prevent by source control, ventilation, filtration, and maintaining environmental conditions.
0	Building-Related Illness (BRI)	Specific illness from a building. Prevent by regular cleaning, maintenance, disinfection and ventilation.
\bigcirc	Mold and Mildew	Ensure good ventilation, control moisture, and use dehumidifiers.
0	Chemical Pollutants	Use low-emission products (e.g., VOC-free items) and provide adequate ventilation.
	Health Issues	
0	Respiratory Issues	Control dust mites, pollen; improve ventilation
0	Irritation	Remove indoor pollutants; improve air cleaning
	Infections	Increase ventilation; implement airborne disease controls
	Headaches and Fatigue	Improve air quality; reduce pollutant exposure

1.2 IAQ Improvement Strategies

Effective IAQ improvement strategies involve a multi-faceted approach, including source control, ventilation enhancements, filtration upgrades, and regular maintenance. By implementing these measures, building owners and managers can reduce indoor pollutant levels, alleviate health concerns, and create a more productive and comfortable environment.

Table 2. IAQ Improvement Strategies

	Design Parameter	Rules of Thumb
C	Source Control	Eliminate indoor pollutant sources; use low-VOC materials.
C	Adequate Ventilation	Increase outdoor air exchange (ASHRAE 62.1); use energy recovery.
0	Filtration	Use high-efficiency filters (MERV 13+); replace filters regularly.
0	Air Cleaning	Install air purifiers; consider UV or bipolar ionization.

HVAC Hacks – Module 4: Breathe Easy with Proper Ventilation and Indoor Air Quality (IAQ) – M08-013

	Design Parameter	Rules of Thumb
0	Moisture Control	Maintain 30-60% relative humidity; fix water leaks promptly.
0	Maintenance	Regularly inspect and clean HVAC systems; regularly clean and disinfect high-touch areas change filters.

Notes:

- Strong air fresheners do not improve IAQ.
- Ozone treatment is generally discouraged for IAQ improvement, as it can cause respiratory irritation and worsen asthma. Both the Environmental Protection Agency (EPA) and the World Health Organization (WHO) advise against using ozone generators for air purification in occupied spaces.

Table 3. Comfort Parameters for IAQ

	Comfort Parameters	Rules of Thumb
0	Ventilation Rate/Occupant	15-20 CFM outdoor air/person
	Air Changes per Hour (ACH)	 ACH is the number of times the room air is replaced with fresh air in an hour. Higher ACH means more frequent air replacement. (e.g., ACH of 6 means room air replaced 6 times per hour). 1-2 ACH (residential spaces) 4-6 ACH (high ceilings, commercial) 6-12 ACH (strenuous activity, industrial)
0	Temperature Control	73-76°F (comfort range)
0	Relative Humidity (RH) Control	30-60% RH (comfort range)
0	Odor Control	Remove odor sources; improve ventilation/air cleaning
C	Particulate Control	High-efficiency filters (MERV 13+); regular cleaning
\bigcirc	Moisture Control	30-60% RH; fix water leaks promptly

1.3 Factors Affecting Ventilation Design

Ventilation design in HVAC systems is influenced by several factors, including building occupancy, indoor air quality (IAQ) standards, climate conditions, and energy efficiency requirements. Other key factors include the type of building (residential, commercial, industrial), the specific needs of occupants, and the presence of indoor contaminants. Additionally, the layout and construction of the building, as well as the types of materials used, can impact ventilation design. Key considerations include as below.

Table 4. Factors Affecting Ventilation Rates

Factors	Impact on Ventilation Design
Indoor Air Quality (IAQ)	Impacts ventilation rates to remove pollutants, odors, and
	contaminants.
Occupancy and Usage	Influences ventilation requirements based on occupant density
	and activities. Areas with high occupant density or activities that
	generate heat and moisture (e.g., kitchens, gyms) may require more ventilation.
Local Climate	Impacts ventilation design to address temperature and humidity
	conditions. Hot and humid climates may require additional
	dehumidification, while cold climates might necessitate heat
	recovery strategies.
Building Envelope	Consider insulation, airtightness, window types, influence heat
	gain or loss and can affect ventilation requirements.
Occupant Comfort	Ensures comfortable indoor conditions - temperature and
	humidity.
Safety	Prevents the accumulation of harmful gases and ensure safe
	combustion appliance operation.
Energy Efficiency	Balance ventilation needs with energy use, using energy
	recovery systems to reduce heating/cooling loads.
Regulations and Standards	Adherence to building codes and ASHRAE 62.1 standards.
Ventilation Strategies	Choose between natural, mechanical, or hybrid ventilation
	strategies based on their pros and cons.
Air Distribution	The design of air distribution systems, including the placement
	and configuration of air intakes, diffusers, and exhaust points,
	affects how fresh outdoor air is supplied and indoor air is
	exhausted.
Building Use	Design ventilation systems based on the specific needs of
	residential, commercial, industrial, or nearthcare facilities.

	Factors	Impact on Ventilation Design
	Economic Considerations	Find cost-effective ventilation solutions that meet needs within
		budget constraints.
	Legal Compliance	Building codes and regulations often mandate minimum
		ventilation requirements to ensure occupant health and safety.
		Compliance with local codes is essential.
	Noise Control	Ventilation systems should be designed and operated to
		minimize noise levels, ensuring a quiet and comfortable indoor
		environment.
	Maintenance and Operation	Consideration of ease of maintenance and long-term operational
		costs is vital. A well-designed ventilation system should be easy
		to maintain and operate efficiently.
0	Environmental Impact	Consider energy consumption and carbon footprint, seeking
		sustainable ventilation solutions.
	Future Flexibility	Allow for changes in occupancy, space usage.

These factors collectively inform the design of effective ventilation systems tailored to each unique environment.

1.4 Ventilation Codes and Standards

The primary standard is ASHRAE Standard 62, which outlines ventilation requirements based on building occupancy, area, and function.

Table 5. Minimum Outdoor Ventilation: ASHRAE 62

	Codes & Standards	Description
	ASHRAE 62.1	Ventilation requirements for commercial and institutional
		buildings. For offices, the minimum outdoor airflow
		recommendations are: 5 CFM per person + 0.06 CFM per sq. ft.
		of floor area.
0	ASHRAE 62.2	Ventilation requirements for residential buildings. Minimum
		outdoor airflow requirements are: 7.5 CFM per person + 0.03
		CFM per sq. ft. of floor area.
	LEED-NC Credits	ASHRAE Standard 62 is essential for earning LEED EQ
		category credits.

Additional standards for IAQ, energy efficiency, and safety include:

- a. ASHRAE 55: Sets thermal comfort conditions for occupants.
- b. ASHRAE 52: Tests air cleaning devices for particulate matter removal.

- c. ASHRAE/ASHE Standard 170: Ventilation requirements in healthcare facilities.
- d. NFPA 90A: Regulations for fire and smoke control.
- e. ASHRAE 90.1 (Section 6.5.3.7): Emphasizes energy efficiency.
- f. OSHA, NIOSH, EPA Standards: Focus on source control to prevent contaminant dispersion.

1.5 Ventilation Strategies

Ventilation strategies refer to the planned approaches and techniques used to facilitate the controlled exchange of indoor and outdoor air within a building or enclosed space. These strategies aim to optimize indoor air quality (IAQ), thermal comfort, and energy efficiency, all while addressing specific requirements and preferences. In a broader context, ventilation can be realized through three primary modes:

	Type of Ventilation	Rules of Thumb
\bigcirc	Natural ventilation	Rely on outdoor air currents and temperature differences.
\bigcirc	Mechanical ventilation	Utilize fans and/or air handling systems.
0	Hybrid approaches	Combining natural and mechanical methods.

The selection of a ventilation strategy depends on factors such as building design, local climate, occupancy patterns, and IAQ objectives. A well-designed ventilation system should strike a balance between providing adequate fresh air and minimizing energy consumption, ensuring that occupants enjoy a healthy, comfortable, and energy-efficient indoor environment. We'll explore these systems in detail in subsequent chapters.

You need to purchase this course to continue viewing this document.